The realization space is [1 1 0 x2^2 0 1 1 0 x2^2 x2^2 1] [1 0 1 -2*x1^2*x2 + x1^2 + 2*x1*x2^2 0 1 0 x1 - x2 -2*x1^2*x2 + x1^2 + 2*x1*x2^2 2*x1^2*x2 - x1^2 - 2*x1*x2^2 + x1*x2 x1] [0 0 0 0 1 1 1 -4*x1*x2 + 2*x1 + 4*x2^2 - x2 -2*x1*x2^2 + x1*x2 + 2*x2^3 -2*x1*x2^2 + x1*x2 + 2*x2^3 x2] in the multivariate polynomial ring in 2 variables over ZZ within the vanishing set of the ideal Ideal with 2 generators avoiding the zero loci of the polynomials RingElem[4*x1^2*x2 - 2*x1^2 - 4*x1*x2^2 - x1*x2 + x1 + x2^2, 4*x1*x2 - 2*x1 - 4*x2^2 + x2, x1, 2*x1*x2 - x1 - x2^2, 2*x1^2*x2 - x1^2 - x1*x2^2 - x2^3, 2*x2 - 1, 2*x1*x2 - x1 - 3*x2^2 + x2, x1 - x2, 8*x1^3*x2^2 - 8*x1^3*x2 + 2*x1^3 - 20*x1^2*x2^3 + 14*x1^2*x2^2 - 2*x1^2*x2 + 12*x1*x2^4 - 4*x1*x2^3 - x2^4, 2*x1*x2 - x1 - 2*x2^2, 4*x1^2*x2 - 2*x1^2 - 4*x1*x2^2 + 2*x1*x2 - x2^2, 4*x1^2*x2 - 2*x1^2 - 4*x1*x2^2 - 2*x1*x2 + 2*x1 + 3*x2^2 - x2, 4*x1^2*x2 - 2*x1^2 - 4*x1*x2^2 - 2*x1*x2 + x1 + 3*x2^2, 4*x1^2*x2 - 2*x1^2 - 4*x1*x2^2 + 2*x1*x2 - x1 - x2^2 + x2, x1 + x2 - 1, x2 - 1, x1*x2 - x1 - x2^2, x1 - 1, 2*x1^2*x2^2 - 3*x1^2*x2 + x1^2 - 2*x1*x2^3 + x1*x2^2 + x2^3, 2*x1*x2 - x1 - x2, x2, 8*x1^3*x2^2 - 8*x1^3*x2 + 2*x1^3 - 16*x1^2*x2^3 + 12*x1^2*x2^2 - 2*x1^2*x2 + 8*x1*x2^4 - 6*x1*x2^3 + 2*x1*x2^2 + 2*x2^4 - x2^3, 16*x1^3*x2^2 - 16*x1^3*x2 + 4*x1^3 - 32*x1^2*x2^3 + 22*x1^2*x2^2 - 3*x1^2*x2 + 16*x1*x2^4 - 4*x1*x2^3 - 2*x2^4, 4*x1^2*x2 - 2*x1^2 - 4*x1*x2^2 + x2^2, 2*x1^2*x2 - x1^2 - 2*x1*x2^2 + x1*x2 - x2^2, 2*x1^2*x2 - x1^2 - 2*x2^3, 4*x1^3*x2^2 - 4*x1^3*x2 + x1^3 - 8*x1^2*x2^3 + 8*x1^2*x2^2 - 2*x1^2*x2 + 4*x1*x2^4 - 2*x1*x2^3 - 2*x2^4, 2*x1^2*x2 - x1^2 - x1*x2 - 2*x2^3 + x2^2, 4*x1*x2 - 3*x1 - 4*x2^2 + 2*x2, 8*x1^3*x2^2 - 8*x1^3*x2 + 2*x1^3 - 16*x1^2*x2^3 + 10*x1^2*x2^2 - x1^2*x2 + 8*x1*x2^4 - 2*x1*x2^3 + x1*x2^2 - x2^3, 4*x1*x2 - x1 - 4*x2^2, 8*x1^2*x2^2 - 8*x1^2*x2 + 2*x1^2 - 8*x1*x2^3 + 2*x1*x2^2 + x1*x2 + 4*x2^3]